The Relationship Between Dysbiosis in Geriatrics and the Risk of HMPV: A Literature Review
Abstract
This study investigates the relationship between dysbiosis in the geriatric population and the increased risk of Human Metapneumovirus (HMPV) infection through a literature review. The aim of the study is to identify the underlying pathophysiological mechanisms by which dysbiosis affects the immune system, particularly via the gut-lung axis, and its implications for HMPV infection risk. A systematic review was conducted on reputable journals published over the last 10 years (2015–2025) by searching PubMed, Scopus, and ScienceDirect using the keywords "dysbiosis," "geriatrics," "HMPV," "respiratory infection," and "gut-lung axis." The findings indicate that elderly individuals experience a decrease in gut microbiota diversity and an increase in pathogenic bacteria, contributing to a state of inflammaging. This disturbance leads to increased intestinal permeability and the translocation of endotoxins into systemic circulation, which in turn causes excessive immune activation. A reduction in the production of anti-inflammatory short-chain fatty acids (SCFA) was also observed, weakening the immune response to viral infections, including HMPV. The data suggest that the elderly with dysbiosis are at a higher risk of developing serious complications from HMPV, such as pneumonia and exacerbation of pulmonary diseases.The implications of this study support the development of intervention strategies, including the administration of probiotics, prebiotics, and dietary modifications, to restore gut microbiota balance and enhance immune responses in the geriatric population. Although further clinical research is needed to fully elucidate these mechanisms, the findings provide a strong foundation for preventive interventions aimed at reducing the disease burden caused by HMPV.
References
Budden, K. F., Gellatly, S. L., Wood, D. L., Cooper, M. A., Morrison, M., Hugenholtz, P., & Hansbro, P. M. (2017). Emerging pathogenic links between microbiota and the gut-lung axis. Nature Reviews Microbiology, 15(1), 55-63.
Conway, J., & A Duggal, N. (2021). Ageing of the gut microbiome: Potential influences on immune senescence and inflammageing. Ageing research reviews, 68, 101323. https://doi.org/10.1016/j.arr.2021.101323
Dang, A. T., & Marsland, B. J. (2019). Microbes, metabolites, and the gut-lung axis. Mucosal Immunology, 12(4), 843-850.
Dinas Kesehatan Pemprov DKI Jakarta. (2025). Tak perlu panik hadapi HMPV, Pemprov DKI imbau terapkan 3M dan pola hidup sehat [Siaran pers No. 5227/SP-HMS/01/2025]. Dinas Kominfotik Pemprov DKI Jakarta. https://www.jakarta.go.id/pusat-media
Dmytriv, T. R., Storey, K. B., & Lushchak, V. I. (2024). Intestinal barrier permeability: the influence of gut microbiota, nutrition, and exercise. Frontiers in physiology, 15, 1380713. https://doi.org/10.3389/fphys.2024.1380713
Dumas, A., Bernard, L., Poquet, Y., Lugo-Villarino, G., & Neyrolles, O. (2018). The role of the lung microbiota and the gut–lung axis in respiratory infectious diseases. Cell Microbiology, 20(12), e12966.
Kulkarni, D., Cong, B., Ranjini, M. J. K., Balchandani, G., Chen, S., Liang, J., González Gordon, L., Sobanjo-ter Meulen, A., Wang, X., Li, Y., Osei-Yeboah, R., Templeton, K., & Nair, H. (2025). The global burden of human metapneumovirus-associated acute respiratory infections in older adults: A systematic review and meta-analysis. *The Lancet Healthy Longevity, 6*(2), 100679. [https://doi.org/10.1016/j.lanhl.2024.100679](https://doi.org/10.1016/j.lanhl.2024.100679)
Elisa, A. E. C., & Binetti, A. G. (2021). Role of probiotics, prebiotics, and synbiotics in the elderly: Insights into their applications. Frontiers in Microbiology, 12, 631254. https://doi.org/10.3389/fmicb.2021.631254
Franceschi, C., Garagnani, P., Vitale, G., Capri, M., & Salvioli, S. (2017). Inflammaging and ‘garb-aging’. Trends in Endocrinology & Metabolism, 29(9), 636-648.
Hou, K., Wu, Z. X., Chen, X. Y., et al. (2022). Microbiota in health and diseases. Signal Transduction and Targeted Therapy, 7, 135. https://doi.org/10.1038/s41392-022-00974-4
Llorente, C., & Schnabl, B. (2015). The gut microbiota and liver disease. Cellular and Molecular Gastroenterology and Hepatology, 1, 275–284. https://doi.org/10.1016/j.jcmgh.2015.04.003
Ma, P. J., Wang, M. M., & Wang, Y. (2022). Gut microbiota: A new insight into lung diseases. Biomedicine & Pharmacotherapy, 155, 113810. https://doi.org/10.1016/j.biopha.2022.113810
Madhogaria, B., Bhowmik, P., & Kundu, A. (2022). Correlation between human gut microbiome and diseases. Infectious Medicine, 1(3), 180–191. https://doi.org/10.1016/j.imj.2022.08.004
Marrella, V., Nicchiotti, F., & Cassani, B. (2024). Microbiota and Immunity during Respiratory Infections: Lung and Gut Affair. International Journal of Molecular Sciences, 25(7), 4051. https://doi.org/10.3390/ijms25074051
Parks, O. B. (2024). The role of age and complement in CD8+ T cell function during Human Metapneumovirus (HMPV) infection (Doctoral dissertation). University of Pittsburgh.
Pellanda, P., Ghosh, T. S., & O’Toole, P. W. (2020). Understanding the impact of age-related changes in the gut microbiome on chronic diseases and the prospect of elderly-specific dietary interventions. Current Opinion in Biotechnology, 70, 48–55. https://doi.org/10.1016/j.copbio.2020.10.003
Piñana, M., González-Sánchez, A., Andrés, C., Abanto, M., Vila, J., Esperalba, J., Moral, N., Espartosa, E., Saubi, N., Creus, A., Codina, M. G., Folgueira, D., Martinez-Urtaza, J., Pumarola, T., & Antón, A. (2023). The emergence, impact, and evolution of Human Metapneumovirus variants from 2014 to 2021 in Spain. Journal of Infection, 87(2), 103–110. https://doi.org/10.1016/j.jinf.2023.05.004
Rea, I. M., Gibson, D. S., McGilligan, V., McNerlan, S. E., Alexander, H. D., & Ross, O. A. (2018). Age and age-related diseases: Role of inflammation triggers and cytokines. Frontiers in Immunology, 9, 586. https://doi.org/10.3389/fimmu.2018.00586
Saint-Criq, V., Lugo-Villarino, G., & Thomas, M. (2021). Dysbiosis, malnutrition, and enhanced gut-lung axis contribute to age-related respiratory diseases. Ageing Research Reviews, 66, 101235. https://doi.org/10.1016/j.arr.2020.101235
Satapathy, T., Satapathy, A., Satapathy, A., Yadav, N., Chandrakar, M., & Chandrakar, K. (2025). Recent outbreaks of Human Metapneumovirus (HMPV): Prevention, diagnosis and therapeutic insights. Journal of Drug Delivery and Therapeutics, 15(2), 193–203. https://doi.org/10.22270/jddt.v15i2.7000
Verma, A., Bhagchandani, T., Rai, A., Nikita, Sardarni, U. K., Bhavesh, N. S., Gulati, S., Malik, R., & Tandon, R. (2024). Short-Chain Fatty Acid (SCFA) as a Connecting Link between Microbiota and Gut-lung axis-A Potential Therapeutic Intervention to Improve Lung Health. ACS omega, 9(13), 14648–14671. https://doi.org/10.1021/acsomega.3c05846
Watson, A., & Wilkinson, T. (2021). Respiratory viral infections in the elderly. Therapeutic Advances in Respiratory Disease, 15, 1753466621995050. https://doi.org/10.1177/1753466621995050
Wicherska-Pawłowska, K., Wróbel, T., & Rybka, J. (2021). Toll-Like Receptors (TLRs), NOD-Like Receptors (NLRs), and RIG-I-Like Receptors (RLRs) in Innate Immunity. TLRs, NLRs, and RLRs Ligands as Immunotherapeutic Agents for Hematopoietic Diseases. International journal of molecular sciences, 22(24), 13397. https://doi.org/10.3390/ijms222413397
Yaqub, M. O., Jain, A., Joseph, C. E., & Edison, L. K. (2025). Microbiome-Driven Therapeutics: From Gut Health to Precision Medicine. Gastrointestinal Disorders, 7(1), 7. https://doi.org/10.3390/gidisord7010007
Ye, H., Zhang, S., Zhang, K., Li, Y., Chen, D., Tan, Y., Liang, L., Liu, M., Liang, J., An, S., Wu, J., Zhu, X., Li, M., & He, Z. (2023). Epidemiology, genetic characteristics, and association with meteorological factors of Human Metapneumovirus infection in children in southern China: A 10-year retrospective study. International Journal of Infectious Diseases, 137, 40–47. https://doi.org/10.1016/j.ijid.2023.10.002
Zhang, F., Fan, D., Huang, J.-L., & Zuo, T. (2022). The gut microbiome: Linking dietary fiber to inflammatory diseases. Medicine in Microecology, 14, 100070. https://doi.org/10.1016/j.medmic.2022.100070
Copyright (c) 2025 Adnexa Miftah Firdausy, Adib Danurdipta, Jodii Arlan Kurnia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.