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Abstract 

Indonesia’s electricity sector remains heavily dependent on fossil fuels, with gas-based generation 
widely used for small- and medium-scale applications. Although liquefied petroleum gas (LPG) burns 
cleaner than coal and diesel, LPG-fueled engines still emit carbon-based pollutants. Hydrogen 
enrichment is a promising transitional strategy to improve combustion and reduce emissions without 
major engine modifications. This study evaluates the effect of hydrogen mass flow rate on the 
operational characteristics of an LPG gas engine operating in dual-fuel mode using combined 
experiments and numerical simulation. Experiments were performed on a single-cylinder, four-stroke 
LPG engine–generator operated at a constant 3000 rpm under steady-state electrical loads. Hydrogen 
was supplied at controlled mass flow rates while LPG remained the primary fuel. Performance 
parameters, air–fuel ratio, operating temperatures, and exhaust emissions were measured. In parallel, 
in-cylinder combustion was analyzed using ANSYS Forte, supported by a mesh sensitivity study to 
ensure numerical reliability. Hydrogen enrichment improved performance across the investigated load 
range, yielding maximum increases of 12.2% in shaft power, 17.2% in torque, and 8.2% in brake mean 
effective pressure. Specific fuel consumption decreased by up to 13.1%, while thermal efficiency 
increased by up to 13.5% compared with LPG-only operation. Hydrogen-enriched operation enabled 
leaner combustion at equivalent loads and reduced engine and lubricant temperatures by up to 12.2% 
and 8.3%, respectively. Emissions decreased, with maximum reductions of 8.2% in CO and 9.4% in HC. 
These outcomes indicate that hydrogen primarily functions as a combustion enhancer by accelerating 
flame propagation and promoting more complete oxidation, supporting LPG–hydrogen dual-fuel 
operation as a practical pathway toward lower-carbon distributed power generation. 

Keywords: Dual-fuel combustion, LPG–hydrogen engine, Hydrogen enrichment, Gas engine 
performance, Exhaust emissions, Combustion kinetics 
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INTRODUCTION 
Indonesia’s electricity sector remains strongly dependent on fossil energy sources, 
posing persistent challenges to long-term sustainability and national decarbonization 
objectives. According to the 2021–2030 Electricity Supply Business Plan (RUPTL), 
approximately 80% of planned power plants continue to rely on coal- and gas-based 
generation, reflecting the limited penetration of clean energy technologies. This 
structural dependence is reinforced by rapid growth in national energy demand, 
which increases at an average rate of 4.2% per year. Without an effective energy 
transition, such trends raise serious concerns regarding energy security and 
environmental degradation. In this context, Indonesia’s CO₂ emissions reached 
approximately 220 million tons in 2020 and are projected to rise sharply to around 
928 million tons by 2060 if fossil fuel dominance remains unchanged. 

Gas-fired power plants represent a significant share of Indonesia’s electricity 
infrastructure, with an installed gas-based capacity of approximately 18 GW. 
Although gas-based systems are commonly regarded as cleaner alternatives to coal, 
their cumulative contribution to greenhouse gas emissions remains substantial. 
Liquefied petroleum gas (LPG) is widely used in gas engines for small- and medium-
scale power generation due to its relatively high energy density and cleaner 
combustion compared with coal and diesel fuels. Nevertheless, LPG combustion still 
produces carbon-based emissions, including CO₂, carbon monoxide (CO), 
hydrocarbons (HC), and nitrogen oxides (NOₓ), which limits its ability to fully align 
with long-term net-zero emission targets. These limitations highlight the need for 
cleaner combustion strategies that can be implemented within existing engine 
infrastructures. 

Recent studies from developing regions underline the broader relevance of this 
challenge. Fossil-fuel-based electricity generation remains a dominant driver of CO₂ 
emissions in emerging economies, as demonstrated in regions such as the Yellow 
River Basin in China, where coal-fired power generation is closely linked to rising 
electricity demand and emission growth (Wu et al., 2024). Similar patterns are 
observed across ASEAN countries, where differences in policy commitment and 
renewable energy deployment result in uneven emission trajectories, despite 
comparable economic growth pressures (Kiwan et al., 2022; Ling et al., 2021). These 
findings emphasize that transitional technologies capable of reducing emissions 
without requiring extensive infrastructural overhaul are particularly valuable for 
developing countries. 

Within this transitional context, gas engines—especially small-scale generator 
sets—are increasingly recognized as practical components of national 
decarbonization roadmaps. Gas engines can utilize existing fuel supply and power 
generation infrastructure while enabling lower emissions relative to coal-based 
systems, thereby supporting gradual decoupling of economic growth from carbon 
emissions (Wang et al., 2021; Guo et al., 2023). Moreover, the integration of gas 
engines with renewable energy sources has been shown to enhance energy security 
and reduce overall system emissions through improved operational flexibility (Manni 
& Mansur, 2023). These attributes position gas engines as a short- to medium-term 
solution during the transition toward cleaner energy systems. 
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From a fuel perspective, LPG has demonstrated favorable performance 
compared with other gaseous fuels such as compressed natural gas (CNG), liquefied 
natural gas (LNG), biogas, and syngas in spark-ignition engines. Experimental studies 
report higher brake thermal efficiency and lower specific fuel consumption for LPG 
relative to gasoline and several alternative gaseous fuels (Birhanu, 2022; Adeboye et 
al., 2025). LPG has also been shown to outperform CNG and biogas in terms of 
regulated emissions, particularly CO and HC, due to its cleaner combustion 
characteristics (Al-Amoodi et al., 2024; Şimşek & Uslu, 2024). Despite these 
advantages, incomplete combustion at certain operating conditions and persistent 
carbon emissions motivate further optimization of LPG-fueled engines. 

Hydrogen has emerged as a highly promising enrichment fuel for spark-
ignition engines owing to its unique combustion properties. Hydrogen exhibits a 
significantly higher laminar flame speed and diffusivity than conventional 
hydrocarbons, enabling faster flame propagation, improved mixture homogeneity, 
and more complete combustion (Georgescu et al., 2024; Mohsen & Al-Dawody, 2022). 
Its low ignition energy reduces the likelihood of misfire, while its wide flammability 
limits allow stable engine operation across a broad range of air–fuel ratios (Bhan, 
2025). When blended with LPG, hydrogen enrichment has been reported to reduce 
CO emissions by up to 40%, enhance thermal efficiency, and improve combustion 
stability, although excessive enrichment may lead to elevated combustion 
temperatures and increased NOₓ formation. 

Several transitional strategies have been proposed to integrate hydrogen into 
existing fuel systems without major infrastructural modifications. Among these, fuel 
blending—particularly hydrogen enrichment of LPG—has demonstrated notable 
emission reductions while maintaining engine reliability and ignition stability 
(Birhanu, 2022; Khudhur, 2025). Retrofit hydrogen injection systems and gas grid 
blending have also been explored as means to reduce the carbon footprint of 
established gas infrastructure, although their practical implementation and long-
term impacts continue to be investigated (Aghahasani et al., 2022; Bello & Solarin, 
2021). 

Despite the growing body of research on hydrogen-assisted combustion, 
significant knowledge gaps persist in the application of hydrogen-enriched LPG for 
small-scale gas engines. In particular, the influence of hydrogen mass flow rate—
rather than volumetric blending ratio—on engine performance, emission 
characteristics, and operational stability remains insufficiently quantified. Challenges 
related to precise mass-flow control, combustion stability limits, and emissions trade-
offs under varying load conditions are not yet fully understood (Aghahasani et al., 
2022; Muhammad et al., 2021; Pukalskas et al., 2021). Addressing these gaps is essential 
for establishing reliable and scalable dual-fuel strategies. 
Accordingly, this research investigates the effect of hydrogen mass flow rate on the 
operational characterization of LPG gas engines operating in dual-fuel mode. The 
study focuses on engine performance, emission behavior, and operating conditions 
under steady-state operation. By providing quantitative, mass-based insights into 
hydrogen enrichment effects, this work aims to support dual-fuel LPG–hydrogen 
technology as a practical transitional pathway toward lower-carbon power generation 
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and to contribute experimental and analytical evidence relevant to renewable energy 
engineering and gas engine optimization. 

2. METHOD 

Research Design and Approach 

This study adopted an integrated experimental and numerical methodology to 
characterize the operational behavior of an LPG gas engine operating in dual-fuel 
LPG–hydrogen mode. The primary objective was to quantify the influence of 
hydrogen mass flow rate on engine performance, exhaust emissions, and operating 
conditions under steady-state operation. The experimental campaign was designed 
following recommended protocols for dual-fuel engine characterization, emphasizing 
controlled load mapping, repeatability, and measurement reliability (Lanotte et al., 
2021; Cheng et al., 2022). 

Experimental investigations were complemented by numerical simulations to provide 
insight into in-cylinder combustion phenomena that cannot be directly measured. 
Computational fluid dynamics (CFD) simulations were conducted using ANSYS Forte 
to model combustion processes, while Aspen HYSYS was employed for 
thermodynamic validation and fuel property consistency. This combined approach 
ensured that experimental observations were supported by physically consistent 
combustion modeling, in line with best practices reported in the literature (Laget et 
al., 2023; Piano et al., 2024). 

2.2 Experimental Setup and Test Engine 

The experimental object was a single-cylinder, four-stroke LPG engine-generator set 
operated at a constant rotational speed of 3000 rpm. The engine was coupled to an 
electrical generator and tested under a range of electrical load conditions to represent 
realistic small-scale power generation scenarios. During all experiments, engine 
speed was maintained constant to isolate the effects of hydrogen enrichment and load 
variation on performance and emissions. 

The original fuel system was modified to allow controlled hydrogen injection while 
retaining LPG as the primary fuel. Hydrogen was supplied externally and introduced 
into the intake system at predetermined mass flow rates. This configuration enabled 
systematic variation of hydrogen input without altering the engine’s basic mechanical 
design, ensuring comparability with conventional LPG operation. 

Table 2.1. Specifications of the LPG Engine-Generator Set 

Parameter Specification 

Brand / Model Green Power CC5000-LPG 

Rated Power 4,800 W 
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Parameter Specification 

Frequency 50 Hz 

Generator Mode Single-phase or Three-phase 

Number of Cylinders 1 

Displacement Volume 389 cc 

Bore × Stroke 88 mm × 64 mm 

Fuel Type LPG 

LPG Consumption 0.32 kg/kWh (rated power) 

LPG Supply Pressure 2.5–3.2 kPa (25–32 mbar) 

Starting System Electric starter 

Cooling System Natural air cooling 

Engine Speed 3000 rpm 

Rotation Direction Counter-clockwise (CCW) 

 

Figure 2.1. LPG engine-generator set used in the experimental study (placeholder). 

2.3 Instrumentation and Measurement Devices 

Electrical output parameters, including voltage and current, were measured using a 
calibrated voltmeter and clamp ammeter to determine generator load and electrical 
power output. Fuel supply pressure was monitored using pressure regulators and 
gauges to ensure stable delivery conditions throughout testing. 

Engine rotational speed was verified using a digital stroboscope. Exhaust emissions 
were quantified using a multi-gas exhaust gas analyzer capable of measuring carbon 
monoxide (CO), carbon dioxide (CO₂), hydrocarbons (HC), oxygen (O₂), and 
nitrogen oxides (NOx). Engine and lubricant temperatures were monitored using 
digital thermocouples positioned at critical locations. The selected instrumentation 
and measurement approach are consistent with established practices for hydrogen-
assisted combustion studies (Ukpaukure et al., 2023; Giacomazzi et al., 2023). 
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Table 2.2. Pressure Regulator Specifications 

Parameter Specification 

Type 550L 

Maximum Inlet Pressure 16 kg/cm² 

Maximum Outlet Pressure 1.5 kg/cm² 

 

Figure 2.2. Pressure regulator with inlet and outlet gauges (placeholder). 

Table 2.3. Stroboscope Specifications 

Parameter Specification 

Brand CZ SINCRO 

Model DG-85 

Measurement Range 0–99,999 rpm 

Accuracy ±1 digit 

Measurement System Digital 

 

Figure 2.3. Digital stroboscope for engine speed measurement (placeholder). 

Table 2.4. Exhaust Gas Analyzer Specifications 

Parameter Specification 

Brand Stargas 898 

Weight 7.5 kg 
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Parameter Specification 

Operating Temperature 40–45 °C 

Dimensions 470 × 230 × 220 mm 

CO Range 0–15 % vol 

CO₂ Range 0–20 % vol 

HC Range 0–30,000 ppm vol 

O₂ Range 0–25 % vol 

NOx Range 0–5,000 ppm vol 

 

Figure 2.4. Exhaust gas analyzer used for emission measurements (placeholder). 

2.4 Experimental Variables and Fuel Properties 

All experiments were conducted at a constant engine speed of 3000 rpm, while the 
electrical load was varied from 500 W to 5000 W in increments of 500 W. Hydrogen 
mass flow rate was systematically varied, while LPG and intake air flow rates were 
measured concurrently to capture changes in mixture composition and combustion 
behavior. 

Measured outputs included LPG mass flow rate, air mass flow rate, electrical voltage 
and current, exhaust gas concentrations (CO and HC), and operating temperatures. 
From these measurements, engine performance indicators such as power output, 
torque, brake mean effective pressure (BMEP), specific fuel consumption (SFC), 
thermal efficiency, and air–fuel ratio (AFR) were calculated using standard engine 
performance equations (Paykani, 2021). 

Table 2.5. Experimental Design and Variables 

Category Parameter 

Constant Engine speed: 3000 rpm; LPG engine-generator 5 kW 

Fuel Types 
LPG (Propane C₃H₈, Butane C₄H₁₀); Hydrogen (≥99.9% 
purity) 
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Category Parameter 

Hydrogen Mass Flow 
Rate 

0; 0.031; 0.061; 0.092; 0.123 kg/kWh 

Load Variation 500–5000 W (500 W intervals) 

Measured Outputs 
LPG flow; air flow; voltage; current; CO; HC; 
temperatures 

Calculated Outputs Power; torque; BMEP; SFC; thermal efficiency; AFR 

Table 2.6. LPG Fuel Specifications 

Property Value 

Main Components Propane (C₃H₈), Butane (C₄H₁₀) 

Storage Pressure 760–1030 kPa 

Typical AFR 15.6:1 

Octane Number ~105 

Table 2.7. Hydrogen Fuel Specifications 

Property Value 

Purity ≥99.9% 

Physical State Gas 

Combustion Product H₂O (water vapor) 

2.5 Data Processing and Numerical Analysis 

Experimental data were processed to calculate engine performance parameters using 
established thermodynamic and engine analysis formulations. Electrical power 
measurements were converted into mechanical performance indicators, while fuel 
mass flow data were used to determine energy input, SFC, and thermal efficiency. 
Air–fuel ratio was calculated based on measured air and fuel flow rates. 

Numerical simulations were conducted using ANSYS Forte to model in-cylinder 
combustion from intake valve closing (IVC) to exhaust valve opening (EVO). Detailed 
chemical kinetics were employed to capture the effects of hydrogen enrichment on 
flame propagation and heat release, following approaches reported in previous 
hydrogen-enriched combustion studies (Maio et al., 2022; Ugliano et al., 2024). Mesh 
sensitivity analysis was performed to balance numerical accuracy and computational 
efficiency, ensuring reliable prediction of pressure traces and temperature fields. 
Simulation results were validated against experimental performance and emission 
data to ensure consistency between numerical and experimental findings. 
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3. RESULT AND DISCUSSION 

 

3.1 Numerical Simulation Results (ANSYS Forte) 

Numerical simulations were conducted to investigate the in-cylinder combustion 
behavior of the LPG–hydrogen dual-fuel engine using ANSYS Forte. The 
computational domain covered the crank angle range from −180° crank angle (CA), 
corresponding to intake valve closing (IVC), to +180° CA, corresponding to exhaust 
valve opening (EVO). To reduce computational cost while maintaining acceptable 
accuracy, only one-eighth of the combustion chamber was simulated, applying 
geometric symmetry assumptions that have been validated in prior CFD studies of 
spark-ignition engines (Maio et al., 2022; Laget et al., 2023). 

Initial conditions at IVC were set at 1 bar pressure and 360 K temperature. The air–
fuel mixture consisted of LPG, modeled as a blend of 30% propane (C₃H₈) and 70% 
butane (C₄H₁₀), with varying hydrogen fractions introduced according to the 
experimental test matrix. These conditions were selected to ensure consistency 
between experimental and numerical analyses. 

 

Figure 3.1. Combustion chamber geometry modeled in ANSYS Forte (placeholder). 
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Figure 3.2. Simulation domain from intake valve closing (IVC) to exhaust valve 
opening (EVO) (placeholder). 

A mesh sensitivity analysis was performed to ensure numerical accuracy while 
minimizing computational expense. The criterion for mesh selection was the 
deviation between simulated brake thermal efficiency (BTE) and the reference 
experimental BTE value of 19.16%. Five mesh configurations with increasing cell 
counts were evaluated. 

Table 3.1. Mesh Sensitivity Test Results 

Number of 
Cells 

Thermal Efficiency 
(%) 

Brake Thermal 
Efficiency (%) 

Error vs. Reference 
(%) 

7,072 24.69 14.83 22.55 

12,294 25.50 14.54 24.06 

17,619 17.85 11.62 39.33 

26,736 20.00 12.44 35.05 

55,800 30.18 18.62 2.81 

Among the tested configurations, the mesh consisting of 55,800 cells exhibited the 
lowest deviation from the experimental reference, with an error of 2.81%. 
Consequently, this mesh resolution was selected for all subsequent numerical 
simulations, ensuring a balance between prediction accuracy and computational 
efficiency. 

3.2 Experimental Performance Results 
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Experimental tests were conducted under steady-state operation at a constant engine 
speed of 3000 rpm, with electrical loads varied from 500 W to 4500 W. Hydrogen 
mass flow rate was systematically increased while maintaining LPG as the primary 
fuel, enabling direct comparison between LPG-only and LPG–hydrogen dual-fuel 
operation. 

3.2.1 Shaft Power 

Shaft power increased monotonically with electrical load for all fuel configurations. 
For hydrogen-enriched operation, shaft power consistently exceeded that of LPG-
only operation across the entire load range. The maximum improvement in shaft 
power reached approximately 12.2%, indicating enhanced combustion effectiveness 
due to hydrogen addition. Similar trends have been reported in previous studies, 
where hydrogen enrichment improved power output by accelerating flame 
propagation and improving combustion completeness (Ortiz-Imedio et al., 2022; 
Guleria et al., 2021). 

 

Figure 3.3. Shaft power versus electrical load for different hydrogen mass flow rates 
(placeholder). 

3.2.2 Torque 

Engine torque exhibited trends comparable to shaft power, increasing with both load 
and hydrogen enrichment. The enhanced torque output is attributed to higher in-
cylinder pressures resulting from improved combustion kinetics. A maximum torque 
increase of approximately 17.2% was observed under hydrogen-enriched conditions 
relative to LPG-only operation, consistent with findings reported by Pal et al. (2021) 
and Stipić et al. (2023). 
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Figure 3.4. Torque versus electrical load for LPG and LPG–hydrogen operation 
(placeholder). 

3.2.3 Brake Mean Effective Pressure (BMEP) 

Brake mean effective pressure increased with rising electrical load for all test 
conditions. Hydrogen enrichment further elevated BMEP values, reflecting higher 
effective pressure during the power stroke. The maximum improvement in BMEP 
reached approximately 8.2% compared with baseline LPG operation. This behavior 
aligns with literature reports indicating that hydrogen addition enhances pressure 
development through faster and more complete combustion (Pal et al., 2021; Stipić et 
al., 2023). 
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Figure 3.5. BMEP versus electrical load for varying hydrogen mass flow rates 
(placeholder). 

3.2.4 Specific Fuel Consumption (SFC) 

Specific fuel consumption decreased with increasing load for all fuel configurations, 
reflecting improved engine efficiency at higher loads. Hydrogen enrichment resulted 
in a notable reduction in SFC across the load range, with a maximum decrease of 
approximately 13.1% compared with LPG-only operation. This reduction is attributed 
to improved combustion efficiency and enhanced energy utilization, in agreement 
with trends reported by Zheng et al. (2021) and Gianetti et al. (2023). 
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Figure 3.6. Specific fuel consumption versus electrical load under different fuel 
mixtures (placeholder). 

3.2.5 Thermal Efficiency 

Thermal efficiency increased with electrical load and hydrogen mass flow rate. The 
highest improvement in thermal efficiency reached approximately 13.5% relative to 
pure LPG operation. Enhanced thermal efficiency under hydrogen-enriched 
conditions is associated with faster flame development and reduced heat losses, as 
also reported in previous hydrogen-assisted combustion studies (Ozkara & Gül, 2025; 
Gianetti et al., 2023). 
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Figure 3.7. Thermal efficiency versus electrical load for LPG–hydrogen mixtures 
(placeholder). 

3.3 Air–Fuel Ratio and Operating Conditions 

3.3.1 Air–Fuel Ratio (AFR) 

The air–fuel ratio decreased with increasing electrical load due to higher fuel flow 
requirements at elevated power outputs. At equivalent loads, hydrogen-enriched 
mixtures exhibited higher AFR values than LPG-only operation, indicating the 
potential for leaner combustion conditions enabled by hydrogen addition. This 
behavior supports previous findings that hydrogen enrichment expands the lean 
operating limit of spark-ignition engines (Jeong, 2024; Deng et al., 2025). 
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Figure 3.8. Air–fuel ratio versus electrical load for different hydrogen mass flow rates 
(placeholder). 

3.3.2 Engine, Lubricant, and Exhaust Temperatures 

Engine and lubricant temperatures increased with electrical load under all operating 
conditions. However, hydrogen enrichment led to a reduction in both engine and 
lubricant temperatures at comparable loads. Maximum reductions of approximately 
12.2% in engine temperature and 8.3% in lubricant temperature were observed, 
suggesting more uniform heat release and reduced localized thermal stress under 
hydrogen-enriched combustion. 
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Figure 3.9. Engine and lubricant temperatures versus electrical load (placeholder). 

3.4 Emission Characteristics 

3.4.1 Carbon Monoxide (CO) 

Carbon monoxide emissions increased with electrical load due to higher fuel input 
and reduced excess air availability. Nevertheless, hydrogen enrichment significantly 
reduced CO emissions across all load conditions. The maximum reduction in CO 
emissions reached approximately 8.2% compared with LPG-only operation. This 
reduction is attributed to improved oxidation of carbon-containing species facilitated 
by hydrogen’s high flame speed and low ignition energy (Pandey et al., 2023; 
Mohamed et al., 2024). 
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Figure 3.10. CO emissions versus electrical load for LPG and LPG–hydrogen fuels 
(placeholder). 

3.4.2 Hydrocarbon (HC) 

Hydrocarbon emissions decreased with increasing load and hydrogen mass flow rate. 
Hydrogen-enriched operation achieved reductions in HC emissions of up to 9.4% 
relative to LPG-only conditions. The observed decrease is associated with reduced 
flame quenching near combustion chamber walls and shorter burn durations under 
hydrogen-assisted combustion, as reported in previous studies (Beccari & Pipitone, 
2021; Mohamed et al., 2024). 
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Figure 3.11. HC emissions versus electrical load under different hydrogen mass flow 
rates (placeholder). 

Discussion 

4.1 Effect of Hydrogen Enrichment on Engine Performance 

The results demonstrate that hydrogen enrichment consistently enhances the 
performance of LPG-fueled gas engines across all tested loads. Increases in shaft 
power (up to approximately 12.2%), torque (around 17.2%), and brake mean effective 
pressure (BMEP) (about 8.2%) clearly indicate that hydrogen acts as an effective 
combustion enhancer rather than merely an auxiliary energy source. These 
improvements can be primarily attributed to hydrogen’s high laminar flame speed 
and diffusivity, which accelerate flame propagation and promote faster and more 
complete combustion. As a result, peak in-cylinder pressure is shifted closer to the 
optimum crank angle, improving the conversion of chemical energy into mechanical 
work. 

From a combustion kinetics perspective, hydrogen exhibits lower activation energy 
and higher reactivity compared with hydrocarbon fuels, enabling rapid initiation and 
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propagation of combustion reactions. This behavior has been widely reported in 
hydrogen-enriched spark-ignition engines, where faster heat release rates lead to 
higher torque and power output, particularly under medium-to-high load conditions 
(Kalvakala et al., 2024; Stipić et al., 2023). The observed performance trends in this 
study are therefore consistent with prior experimental and numerical investigations, 
reinforcing the role of hydrogen as a combustion accelerator in LPG engines. 

4.2 Thermal Efficiency and Fuel Consumption Characteristics 

The reduction in specific fuel consumption (up to approximately 13.1%) and the 
corresponding increase in thermal efficiency (around 13.5%) further confirm the 
beneficial impact of hydrogen enrichment on engine efficiency. Improved 
combustion completeness reduces unburned fuel losses and enhances the effective 
utilization of the supplied fuel energy. Hydrogen-assisted combustion also shortens 
combustion duration, which limits heat losses to the cylinder walls and increases the 
fraction of released energy converted into useful work. 

These findings align with studies reporting that hydrogen enrichment improves 
thermal efficiency by advancing heat release phasing and stabilizing combustion, 
particularly in operating regimes where LPG-only combustion is kinetically 
constrained (Zhou et al., 2021; Ozkara & Gül, 2025). However, the efficiency benefits 
are not expected to increase indefinitely with hydrogen addition. Excessive hydrogen 
enrichment may lead to overly lean mixtures or abnormal combustion behavior, 
which can offset efficiency gains if not properly controlled (Biondo et al., 2022). 

4.3 Air–Fuel Ratio and Operating Temperature Behavior 

The air–fuel ratio (AFR) results indicate that hydrogen-enriched operation enables 
comparatively leaner combustion at equivalent loads without compromising power 
output. This expansion of the stable operating window is a direct consequence of 
hydrogen’s wide flammability limits and enhanced flame stability. Leaner operation 
contributes to improved efficiency and reduced carbon-based emissions while 
maintaining acceptable engine performance. 

Interestingly, although hydrogen intensifies the combustion process, measured 
engine and lubricant temperatures decreased by approximately 12.2% and 8.3%, 
respectively. This behavior suggests that hydrogen enrichment promotes more 
uniform heat release and reduces localized hot spots within the combustion chamber. 
Improved flame propagation and shorter combustion duration limit prolonged 
exposure of engine components to high temperatures, thereby reducing thermal 
stress. Similar temperature reduction trends under hydrogen-enriched conditions 
have been reported in previous studies, particularly for small-scale engines with 
limited cooling capacity (Halewadimath et al., 2023). 

4.4 Emission Reduction Mechanisms for CO and HC 
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Hydrogen enrichment resulted in notable reductions in carbon monoxide (CO) and 
hydrocarbon (HC) emissions, with maximum decreases of approximately 8.2% and 
9.4%, respectively. These reductions can be explained by several complementary 
mechanisms. First, hydrogen enhances oxidation of intermediate species by 
increasing flame temperature and reaction rates, leading to more complete 
conversion of carbon-containing compounds into CO₂. Second, faster flame 
propagation reduces the extent of flame quenching near combustion chamber walls 
and crevice volumes, where unburned hydrocarbons typically originate. 

The improved oxidation and reduced quenching effects observed in this study are 
consistent with established combustion theories and experimental findings in 
hydrogen-enriched SI engines (Beccari & Pipitone, 2021; Mohamed et al., 2024; 
Pandey et al., 2023). Collectively, these mechanisms explain the simultaneous 
improvement in efficiency and reduction in CO and HC emissions achieved through 
hydrogen enrichment. 

4.5 Trade-Offs, NOx Considerations, and Optimal Enrichment Window 

While hydrogen enrichment provides clear performance and emission benefits, 
hydrogen mass flow rate emerges as a critical control parameter. Increasing hydrogen 
content can elevate peak combustion temperatures, potentially leading to increased 
nitrogen oxides (NOx) formation, particularly at high loads and near-stoichiometric 
conditions. Although NOx emissions were not the primary focus of the present 
analysis, extensive literature indicates that hydrogen-assisted combustion often 
requires mitigation strategies to manage NOx formation (Rajak et al., 2021; Ortiz-
Imedio et al., 2022). 

Defining an optimal hydrogen enrichment window is therefore essential. Previous 
studies suggest that moderate enrichment levels—typically around 20–30% hydrogen 
by volume—offer the best compromise between efficiency improvement, CO/HC 
reduction, and NOx control (Biondo et al., 2022; Stipić et al., 2023). Mitigation 
strategies such as exhaust gas recirculation (EGR), ignition timing retardation, and 
lean operation can further suppress NOx formation while preserving the benefits of 
hydrogen enrichment. 

4.6 Consistency with Literature and Practical Implications 

The trends observed in this study are consistent with prior experimental and 
numerical investigations of hydrogen-enriched LPG and other hydrocarbon-fueled 
engines. Variations reported across different studies can largely be attributed to 
differences in engine size, compression ratio, load range, and hydrogen mixing 
strategy (Bhowmik et al., 2021; Nguyen & Le, 2022; Hadjkacem et al., 2023). Small-
scale engines, such as the one investigated here, often exhibit pronounced responses 
to hydrogen enrichment due to their lower thermal inertia and simpler combustion 
systems. 
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From a practical standpoint, the combined improvements in performance and 
reductions in carbon-based emissions demonstrate that dual-fuel LPG–hydrogen 
operation represents an effective transitional strategy for distributed power 
generation. Importantly, these benefits are achieved without major engine hardware 
modifications, enhancing the feasibility of near-term implementation. Nevertheless, 
issues related to hydrogen safety, fuel logistics, and cost remain critical 
considerations for large-scale deployment (Cai et al., 2023; Devarajan et al., 2021). 

Overall, the findings reinforce the concept of hydrogen as a combustion enhancer 
rather than a direct replacement fuel in LPG engines. When appropriately controlled, 
hydrogen enrichment can deliver meaningful efficiency gains and emission 
reductions, supporting its role as a practical pathway toward lower-carbon power 
generation in fossil-fuel-dependent energy systems. 

4. CONCLUSION 
 
This study demonstrates that hydrogen enrichment is an effective and practical 
strategy to improve the performance and environmental profile of small-scale LPG-
fueled power generation without major engine modifications. Using a combined 
experimental–numerical approach on a single-cylinder LPG engine–generator 
operating at 3000 rpm under steady-state loads, increasing hydrogen mass flow rate 
consistently enhanced combustion effectiveness, producing maximum gains of 12.2% 
in shaft power, 17.2% in torque, and 8.2% in brake mean effective pressure, while 
reducing specific fuel consumption by up to 13.1% and increasing thermal efficiency 
by up to 13.5% relative to LPG-only operation. Hydrogen addition also enabled leaner 
operation and reduced thermal stress indicators, with engine and lubricant 
temperatures decreasing by up to 12.2% and 8.3%, respectively, alongside measurable 
emission benefits, including maximum reductions of 8.2% in CO and 9.4% in HC. 
Collectively, these results confirm that hydrogen primarily functions as a combustion 
enhancer by accelerating flame propagation and promoting more complete oxidation, 
supporting LPG–hydrogen dual-fuel operation as a viable transitional pathway 
toward lower-carbon distributed power generation. 
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