JURNAL AR RO'IS MANDALIKA (ARMADA)

Journal website: https://ojs.cahayamandalika.com/index.php/armada

ISSN: 2774-8499 Vol. 5 No. 3 (2025)

Research Article

Optimization of Eco-Friendly Materials in Urban Road Construction to Support Sustainable Development and Energy Efficiency

Robert¹, Evayanti Tirtania Lantang²

Politeknik Negeri Pontianak, Indonesia ¹ STITEK Dharma Yadi Makassar, Indonesia ² Corresponding Author, Email: robertrobert83295@yahoo.com

Abstract

The rapid pace of urbanization has increased the demand for environmentally friendly and energy-efficient urban road infrastructure. However, the use of conventional construction materials contributes to ecosystem degradation and carbon emissions. This study aims to optimize the use of eco-friendly materials in urban road construction to support sustainable development and energy efficiency. A qualitative literature review approach was employed to examine relevant scientific sources, including journals, books, and policy documents. The data were analyzed using content analysis to identify patterns and the contributions of eco-friendly materials to energy efficiency and carbon emission reduction. The findings indicate that materials such as recycled concrete, eco-friendly asphalt with bio-based binders, and pollution-absorbing paving materials have significant potential in enhancing energy efficiency and reducing carbon emissions in urban road construction. Several cities, including Tokyo, Los Angeles, and Paris, have begun adopting these approaches in their infrastructure projects. This study recommends the adoption of recycled materials, bio-based binders, and eco-friendly paving technologies as key strategies in developing sustainable road infrastructure. The practical implications of this research include long-term energy savings, reduced maintenance costs, and improved urban environmental quality.

Keywords: Eco-Friendly Materials, Urban Roads, Sustainable Development.

INTRODUCTION

Along with the rapid development of urbanization and the need for better road infrastructure, urban road construction has become very crucial to support community mobility and economy. However, environmentally unfriendly road construction can contribute to ecosystem damage and increased carbon emissions that have an impact on climate change (Enríquez-de-Salamanca, 2019). Construction materials used in road construction often come from non-renewable materials and production processes that require high energy (Reddy et al., 2022). Therefore, it is important to find alternative materials that are environmentally friendly and support sustainable development (Amin et al., 2022). One solution that can be applied is to optimize the use of environmentally friendly materials in urban road construction, which not only reduces negative impacts on the environment but also increases energy efficiency (Hu et al., 2019).

Road construction is a multifaceted process that encompasses planning, design, material selection, and execution to create safe, durable, and efficient roadways. Recent advancements in construction techniques have significantly improved the quality and sustainability of road infrastructure. For instance, the use of recycled materials such as Recycled Asphalt Pavement (RAP) and Recycled Asphalt Shingles (RAS) has become prevalent. These materials not only reduce environmental impact but also enhance the durability and cost-effectiveness of roads (Blair, 2023; Marve, 2024).

In addition to material innovations, technological advancements have revolutionized road construction processes. The integration of Building Information Modeling (BIM) and Geographic Information Systems (GIS) has facilitated more accurate planning and execution, leading to improved project outcomes (Blair, 2023). Moreover, the adoption of autonomous construction vehicles and drone surveying has increased efficiency and safety on construction sites (Hatake, 2024). These developments underscore the industry's commitment to enhancing road infrastructure through sustainable practices and cutting-edge technology.

Environmentally friendly materials in urban road construction can include recycled materials, composite materials, and materials that are more efficient in terms of energy consumption and emissions during the production process (Jiang et al., 2018). The use of these materials has the potential to reduce construction waste and extend the life of roads, thus providing long-term benefits for the environment and economy (Hussain & Kamal, 2015). Various studies have shown that the application of

environmentally friendly technologies and materials can improve road quality, reduce maintenance costs, and reduce energy consumption required for road maintenance (Thom & Dawson, 2019). Therefore, optimizing the use of environmentally friendly materials is a strategic step in supporting sustainable development in urban areas.

Sustainable development is an important concept in the context of road infrastructure development in large cities. One of the main components of sustainable development is reducing the carbon footprint generated by construction activities (Luo et al., 2022). With the increasing global awareness of the importance of reducing negative impacts on the environment, many cities have begun to implement policies to use more environmentally friendly materials in construction projects (Kassim et al., 2005). Several countries have begun to adopt policies that support the use of environmentally friendly materials in public infrastructure as part of their efforts to achieve the sustainable development goals set by the UN 2030 Agenda (Baliello & Wang, 2024). However, there are still many challenges in optimizing these materials, especially related to the cost and availability of materials that can meet construction quality standards.

The urgency of this research arises along with the increasing need for more efficient and sustainable road infrastructure amidst global climate change. Large cities that continue to grow require solutions that can reduce negative impacts on the environment without sacrificing the quality and durability of road infrastructure. Therefore, this research is important to contribute to the development of materials that can optimize urban road construction, while supporting sustainable development and energy efficiency.

Previous studies have widely studied the use of environmentally friendly materials in road construction. For example, research by Kumar et al. (2019) shows that the use of recycled asphalt can reduce carbon emissions and energy consumption in the road construction process. In addition, research by Patil and Patil (2021) found that the use of environmentally friendly concrete made from recycled materials can increase road durability and reduce maintenance costs. However, there are still many challenges in integrating environmentally friendly materials on a large scale in urban road construction projects. Therefore, this study aims to identify and analyze environmentally friendly materials that can be optimized in urban road construction.

The purpose of this study is to optimize the use of environmentally friendly

materials in urban road construction to support sustainable development and energy efficiency. This study will identify various types of materials that can be used in more environmentally friendly road construction, and analyze their impacts on energy efficiency and carbon emission reduction. In addition, this study aims to provide recommendations on the most effective and efficient use of environmentally friendly materials in the context of urban road construction.

METHOD

This research utilizes a qualitative approach with the research type of a literature review. The aim is to examine and analyze the optimization of environmentally friendly materials in urban road construction. A qualitative approach was chosen because it allows the researcher to gain an in-depth understanding from various existing literatures regarding environmentally friendly materials and their contribution to sustainable development and energy efficiency in the context of urban road construction (Creswell, 2021; Sugiyono, 2019).

Data Sources

The data used in this research are literature collected from scientific journals, books, technical articles, research reports, and policy documents relevant to the topic discussed. These sources were gathered through searches in various trusted academic databases such as Google Scholar, Scopus, and ProQuest to ensure the quality and relevance of the information obtained (Yin, 2009). In this literature study, the data collection technique employed is documentation, which aims to gather various documents and publications related to the application of environmentally friendly materials in construction and their impact on energy efficiency and sustainable development (Bowen, 2009; Snyder, 2019).

Data Collection Techniques

The data collection technique used in this study is documentation. This technique involves the gathering of written, printed, or digital documents that are relevant to the research topic. These documents can include books, journal articles, research papers, and government reports that discuss the application of environmentally friendly materials in urban road construction (Snyder, 2019).

Data Analysis Methods

The data analysis method applied in this research is content analysis (Krippendorff, 2018). Content analysis is conducted by identifying major themes that emerge from various literature sources and classifying the information into specific categories relevant to the research topic. This analysis aims to understand the patterns that emerge in the application of environmentally friendly materials and evaluate their contribution to sustainable development and energy efficiency in urban road construction (Miles & Huberman, 1994). By using this approach, this research aims to provide a comprehensive understanding of the potential of environmentally friendly materials and their implications in urban road construction.

RESULT AND DISCUSSION

Eco-Friendly Materials in Urban Road Construction

Various eco-friendly materials have been developed to replace conventional materials in road construction. Some materials that can be considered include:

- Recycled Concrete: Concrete made from recycled materials such as recycled aggregates, which reduces the use of natural resources and minimizes construction waste.
- 2. Eco-Friendly Asphalt: Asphalt that uses more environmentally friendly additives, such as bio-based binders or partially replacing asphalt with recycled materials.
- 3. Bio-Based Binders: The use of binders derived from renewable sources like vegetable oils, which can reduce the carbon footprint of the constructed roads.
- 4. Pollution-Reducing Paving Materials: Certain paving materials coated with substances that can absorb air pollution or reduce urban heat radiation.

Impact Analysis on Energy Efficiency and Carbon Emission Reduction

Optimizing eco-friendly materials in urban road construction aims not only to reduce environmental impacts but also to enhance energy efficiency during the road construction and maintenance processes. The following aspects can be analyzed in this research:

1. Energy Efficiency in the Construction Process: The use of lighter or easier-to-

produce materials can reduce energy consumption during the construction phase. For example, the use of recycled materials can reduce the need for energy-intensive mining and production of new materials.

- 2. Carbon Emission Reduction: Using more eco-friendly materials can significantly reduce carbon emissions. Recycled concrete and asphalt with bio-based binders have a lower carbon footprint compared to conventional materials. A life cycle assessment (LCA) of various materials can help determine the most effective materials for reducing carbon emissions over their lifespan.
- 3. Long-Term Energy Efficiency: Roads built with eco-friendly materials can offer long-term energy savings. For instance, lighter paving materials can reduce the need for street lighting at night, while materials that absorb heat can lower surface temperatures, mitigating the urban heat island effect.

Recommendations for Using Eco-Friendly Materials

Based on the analysis of materials and their impact on energy efficiency and carbon emission reduction, the following recommendations for using eco-friendly materials in urban road construction are made:

- Recycled Materials as an Alternative: Recycled concrete and asphalt with recycled
 materials are highly effective choices for reducing environmental impacts. Using
 larger quantities of recycled aggregates in concrete mixtures can reduce the demand
 for new raw materials, thereby reducing carbon emissions during the construction
 process.
- 2. Use of Eco-Friendly Paving Materials: Paving materials coated with substances that can reduce air pollution or control urban temperatures are very beneficial in urban contexts. For example, using lighter-colored paving can help reduce the urban heat island effect that often occurs in densely populated areas.
- 3. Use of Bio-Based Binders: The use of bio-based binders in asphalt can reduce dependency on fossil fuels, while also extending the lifespan of roads, reducing the need for costly and energy-consuming routine maintenance.

Case Studies and Applications in Urban Cities

Several cities around the world have started implementing eco-friendly materials in their road construction projects. For example:

- 1. Tokyo, Japan has implemented asphalt based on bio-based binders, which reduces carbon emissions during production.
- 2. Los Angeles, USA uses recycled concrete in several major road projects to reduce energy consumption and construction waste.
- 3. Paris, France has explored the use of paving materials that can absorb air pollution, which helps improve the city's air quality.

Optimizing the use of eco-friendly materials in urban road construction not only provides significant environmental benefits but also supports energy efficiency and carbon emission reduction. As the demand for sustainable urban infrastructure continues to grow, the adoption of eco-friendly materials such as recycled concrete, bio-based asphalt, and pollution-reducing paving is a critical step towards achieving this goal. Therefore, it is recommended to continue researching and developing new, more efficient and eco-friendly materials, as well as to explore case studies from various cities that have successfully implemented these concepts.

CONCLUSION

This study concludes that optimizing the use of environmentally friendly materials in urban road construction is a strategic step toward achieving sustainable development and energy efficiency. The application of recycled concrete, asphalt with bio-based binders, and pollution-absorbing pavement materials significantly contributes to reducing carbon emissions and increasing energy efficiency during both construction and maintenance phases. Furthermore, implementing such technologies supports global policies aimed at reducing environmental impacts from the construction sector.

Practical Suggestions

Governments and construction industry stakeholders should begin integrating eco-friendly materials into all phases of road development. Initial steps may include adopting regulations that encourage the use of recycled materials and bio-based binders. Additionally, technical training for contractors and collaboration with research institutions are essential to ensure the effective and sustainable implementation of these materials.

Future Research Recommendations

Future studies should include empirical testing of eco-friendly material applications in actual urban road projects in Indonesia. Moreover, cost-benefit analysis and quantitative life cycle assessment (LCA) are recommended to provide a more comprehensive understanding of the long-term efficiency and environmental impacts of these materials.

Bibliography

- Baliello, A., & Wang, D. (2024). Advances in Road Engineering: Innovation in Road Pavements and Materials. In *Buildings* (Vol. 14, Issue 7, p. 2250). MDPI.
- Blair, A. . (2023). *Road Construction: Latest Trends and Techniques*. https://alblairconstruction.com/road-construction-latest-trends-and-techniques/?utm source=chatgpt.com
- Bowen, G. A. (2009). Document analysis as a qualitative research method. *Qualitative Research Journal*, 9(2), 27–40.
- Creswell, J. W. (2021). A concise introduction to mixed methods research. SAGE publications.
- Enríquez-de-Salamanca, Á. (2019). Environmental impacts of climate change adaptation of road pavements and mitigation options. *International Journal of Pavement Engineering*, 20(6), 691–696.
- Hatake, A. (2024). *Advanced Techniques in Modern Road Construction*. https://civilworksstudies.blogspot.com/2024/07/advanced-techniques-in-modern-road.html?utm_source=chatgpt.com
- Hu, W., Shu, X., & Huang, B. (2019). Sustainability innovations in transportation infrastructure: An overview of the special volume on sustainable road paving. *Journal of Cleaner Production*, 235, 369–377.
- Hussain, A., & Kamal, M. A. (2015). Energy efficient sustainable building materials: An overview. *Key Engineering Materials*, 650, 38–50.
- Jiang, W., Huang, Y., & Sha, A. (2018). A review of eco-friendly functional road materials. *Construction and Building Materials*, 191, 1082–1092.
- Kassim, T. A., Simoneit, B. R. T., & Williamson, K. J. (2005). Recycling solid wastes as road construction materials: An environmentally sustainable approach. Water Pollution: Environmental Impact Assessment of Recycled Wastes on Surface and Ground Waters, 59–181
- Krippendorff, K. (2018). *Content analysis: An introduction to its methodology*. Sage publications. Luo, W., Sandanayake, M., Hou, L., Tan, Y., & Zhang, G. (2022). A systematic review of green construction research using scientometrics methods. *Journal of Cleaner Production*, 366, 132710.
- Marve, S. R. (2024). *Pioneering Roadways: Advancements in Construction Techniques*.
- Reddy, K. R., Pancharathi, R. K., Reddy, N. G., & Arukala, S. R. (2022). *Advances in sustainable materials and resilient infrastructure*. Springer.
- Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. *Journal of Business Research*, 104, 333–339.
- Sugiyono. (2019). *Metode Penelitian*. CV Alfabeta.
- Thom, N., & Dawson, A. (2019). Sustainable road design: Promoting recycling and non-conventional materials. *Sustainability*, 11(21), 6106.
- Yin, R. K. (2009). Case study research: Design and methods (applied social research methods). *London and Singapore: Sage*, 23, 24.